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Figure 1: A case illustration of designer-AI collaborative design space exploration in CoExploreDS. In this case, the designer
began by (A) outlining the design task on the main canvas, focusing on the development of a household food processor. The
designer focused on the problem, “How can a smooth surface and good integrity be achieved after cutting food?” (B) Using the
problem-solution co-evolution model and design reasoning methods, CoExploreDS visualizes the design process, analyzes the
current design process, and (C) generates multiple possible suggestions during the conceptualization process. Subsequently, the
designer will be inspired by the suggestion “Vibrating knife for precise, non-stick cuts”, and then (D) clicks to add this node to
the main canvas, thereby exploring the design space together with AI.
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Abstract
In product design, effective design space exploration (DSE) is cru-
cial for generating high-quality design ideas, requiring designers
to possess broad knowledge and balance various constraints. As
large-scale models thrive, AI has become an indispensable design
collaborator by providing cross-domain knowledge and assistance
with complex reasoning. To facilitate collaborative DSE between de-
signers and AI, we frame and advance the design process through
the problem-solution co-evolution model and design reasoning
methods. A formative study was conducted to identify key strate-
gies for the implementation. Then we developed CoExploreDS, a
system that formalizes problems and solutions emerging in the
human-AI collaborative design space into nodes. Using four reason-
ing methods, this system dynamically generates suggestions based
on the ongoing design process. User studies confirmed that CoEx-
ploreDS significantly improves design quality and the human-AI
collaboration experience.

CCS Concepts
• Human-centered computing → Interactive systems and
tools.
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1 Introduction
In the product design process, the quality of ideas generated in the
initial phase is essential as it significantly impacts the development
costs and the level of innovation in the final product [55, 66]. In this
phase, designers strive to generate high-quality solutions by explor-
ing a product’s “design space” [74]. This process involves refining
the initial design task into detailed requirements and exploring all
possible and alternative solutions within practical constraints [66].
However, design space exploration (DSE) is demanding for design-
ers because of its information-intensive nature [8, 32]. Designers
must master a broad spectrum of knowledge and develop poten-
tial solutions comprehensively, thereby expanding the boundaries
of the design space [4, 80]. Additionally, they navigate trade-offs
and constraints to reason across various problems and solutions,
transforming ill-defined problems into feasible solutions [56].

Previous theories on the early stages of design have provided
valuable references and guidelines for understanding and managing
the process of DSE. To frame information within design spaces, the
problem-solution co-evolution model has been widely adopted and
continuously developed [15, 23]. This model divides the design
space into two parts: a “problem space” and a “solution space”.
As designers explore, design problems and solutions “co-evolve”
over time until a good “matching” between problem and solution
is achieved. Not only are solutions assessed within the context of

the specific problem, but requirements can also be further adjusted
based on new solutions [73].

To advance DSE, understanding the driving force underlying
the evolution of problems and solutions under specific constraints
is crucial. Designers may employ various methods, including de-
ductive [14], inductive [22], abductive [20], and analogical reason-
ing [7, 13]. For example, assuming that a portable device made of
light composite materials will likely be popular if surveys support
preferences for such materials demonstrates inductive reasoning.
Meanwhile, inferring that a smartwatch’s short battery life results
from its always-on display because it consumes more power exem-
plifies abductive reasoning. With these methods, designers can
apply positive constraints or backward inferences [28, 47], thus
addressing diverse considerations in complex design practice.

However, applying design theories in work predominantly relies
on designers’ years of training and intuition [31, 65]. These prac-
tices call for creative tools that support rapid ideation across various
knowledge domains and structure the thinking process in align-
ment with design theories. As an alternative, large language mod-
els (LLMs) are increasingly employed in human-AI collaborative
design to supplement knowledge [35] and assist reasoning [10] for
their rich knowledge and strong in-context comprehension abilities.
For example, some collaborative systems such as GenQuery [63] and
DiscipLink [79] enable designers to utilize similarity-based search
or automatic query expansion, thus aggregating diverse results
from interdisciplinary sources into the design space. Meanwhile,
some systems clarify designers’ intentions to support interpretable
reasoning [34] and assist reasoning by providing hints and feed-
back [9]. In this way, human designers and AI can collaboratively
enrich and explore design spaces [64].

In this paper, we aim to frame and advance human-AI collabo-
rative DSE through the problem-solution co-evolution model and
various design reasoning methods. This research includes three
phases. In the formative study involving 12 designers, we adopted
the problem-solution co-evolution model as a framework for struc-
turing the design space and applied design reasoning methods to
understand the driving force behind DSE. This allowed us to an-
alyze the challenges designers face when navigating the design
space with AI and to identify strategies to support collaborative
DSE. Then we developed CoExploreDS, a system that formalizes
emerging problems and solutions as nodes in a human-AI collabora-
tive design space. CoExploreDS dynamically generates suggestions
using four reasoning methods based on the ongoing design process.
Finally, we compared CoExploreDS with a baseline system in a
between-subjects study involving 32 designers. Our findings show
that CoExploreDS enhances design outcomes and fosters creativity
in collaborative DSE for two factors: CoExploreDS facilitates more
systematic exploration with less effort and appropriately affects
designers’ reliance on AI and self-confidence in the collaborative
process.

In conclusion, this study made three main contributions:

• Modeling the DSE process by proposing a coding method
for the design space, analyzing how the design process and
designers’ attitudes affect collaborative DSE, and proposing
three strategies to integrate the problem-solution model and
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design reasoning methods into human-AI collaborative DSE
in a formative study.
• Developing CoExploreDS, a system that frames and advances
the collaborative DSE process by formalizing problems and
solutions into nodes and by dynamically generating sug-
gestions based on the ongoing design process using four
reasoning methods.
• Demonstrating the utility of CoExploreDS in supporting
systematic DSE with lower efforts and positively shaping
the human-AI collaboration experience.

2 Related Work
2.1 Human-AI Collaborative Design
The advancements in large-scale generative models allow AI to
increasingly serve as a collaborative design partner for humans [30,
75], significantly altering DSE [64]. Due to their immense size
and scale of training data, such models can generate seemingly
new content and encompass countless real-world cases [27]. With
proficiency in information supplementation and logical reasoning,
LLMs like GPT-4 are accelerating collaborative design integration
between humans and AI.

Firstly, LLMs help designers integrate scattered knowledge across
fields and generate new content, collaboratively enriching the de-
sign space. For example, systems such as DiscipLink [79] and Gen-
Query [63] enable designers to use natural language queries to
access broad knowledge bases. Additionally, some systems can au-
tomatically suggest conceptual connections for human designers
and support evidence-based designs. For example, PopBlends can
find conceptual connections between the users’ topics and a pop
culture domain [71]. Researchers also integrate causal pathway
diagrams to support theory-driven design in the domain of human-
centered design [81].

Secondly, LLMs have the potential to support reasoning [43, 72].
Reasoning has long been considered a unique human cognitive skill,
essential for understanding knowledge and bridging comprehen-
sion gaps under constraints [19]. As LLMs gradually exhibit logical
reasoning abilities, researchers have been attempting to apply AI
to targeted reasoning processes in design. For example, BIDTrainer
enables designers to reason more quickly and interactively in bio-
inspired design [9]. SituationAdapt can assess the placement of
interactive UI elements for contextual UI optimization [46].

Researchers have explored integrating LLMs with classical de-
sign methods [10]. For example, systems such as TRIZ-GPT [11]
and AutoTRIZ [38] use LLMs to automate and enhance the Theory
of Inventive Problem Solving methodology. Guided by the Function-
Behavior-Structure model, LLMs can generate more reasonable and
creative design concepts [69]. Our paper focuses on the classifi-
cation and evolution of information within the design space. By
framing the overall design space and interpreting designers’ move-
ments within DSE, the approach seeks to advance collaborative
conceptual ideation processes between designers and AI.

2.2 Problem-Solution Co-Evolution in Design
As a descriptive framework, problem-solution co-evolution views
DSE as an iterative development process [15, 23]. This theory splits
the design space into “problem space” (i.e., the required behavior of

the design) and “solution space” (i.e., the potential structural combi-
nations constituting the design). This framework emphasizes that
continuous problem formulation and redefinition, paired with solu-
tion exploration, drive the evolution and maturation of design [24].
Designers continually propose, evaluate, and reject potential design
problems and solutions until a satisfactory “matching” is achieved.

Specifically, four co-evolution episodes were identified: problem
evolution (P-P), proposing solutions (P-S), proposing problems (S-
P), and solution evolution (S-S). For instance, when designing an
electric kettle, the initial problem focused on how to heat water
efficiently. As past surveys indicated a desire for precise tempera-
ture control for different beverages, the problem evolved into how
to provide customizable temperature settings (P-P). To address the
new problem, the team proposed integrating a temperature control
system with preset options (P-S). After further discussion, a new
problem emerged (S-P): how to maintain energy efficiency while
offering rapid temperature changes. This led to the solution evolv-
ing (S-S) by incorporating advanced insulation and a more efficient
heating element. These interactions between problem spaces and
solution spaces manifest as cyclical oscillations [23].

Problem-solution co-evolution offers a structured explanation
of design space information, essential for clarifying the trajectory
of design development [29]. However, the model does not explain
the driving forces behind these episodes, especially how designers
move from one part to another in the design space. Understanding
these forces is essential for maximizing the potential of co-evolution
in collaborative DSE.

2.3 Reasoning Methods in Design
Design reasoning refers to how designers systematically navigate,
process, and organize information under specific constraints within
the design space [22]. It involves addressing both objective require-
ments (e.g., functionality, cost, structural integrity) and subjec-
tive requirements (e.g., appearance) [18, 66]. Prior studies have
demonstrated that abductive, deductive, and inductive reasoning
can explain most step-by-step inferences during the design pro-
cess [14, 22]. Additionally, analogical reasoning reflects the common
cognitive leaps, case-based metaphors, and associative jumps ob-
served in the design process. Designers can use less effort to retrieve
and activate past knowledge [7, 61]. These four reasoning methods
provide a comprehensive explanation of the design process.

Specifically, deductive and inductive reasoning rely on existing
data and do not create entirely new concepts. Deductive reason-
ing derives solutions from general theories, ensuring adherence to
established rules, while inductive reasoning infers concepts from
available data within a given model or frame of reference. For
example, To ensure market compliance, the newly designed smart
lamp must meet the specific safety standards required for all elec-
tronic devices is an example of deductive reasoning, while Observing
that smartphones with larger screens sell better, a designer might con-
clude that users generally prefer larger displays exemplifies inductive
reasoning. Besides, abductive reasoning forms new rules or rela-
tionships to explain outcomes, making it essential for generating
original ideas. For instance, given that a new smartwatch drains
its battery quickly, designers might infer that its high-resolution
display is the primary power consumer. Additionally, analogical
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Table 1: Examples of design problem-solution co-evolution episodes.

Role Episode Type Reasoning Methods Think-Aloud Segments

Designer Start-Ph / “What problems might office workers face?”
AI Ph-Pa Inductive “They might be sensitive to price... high expectations for speed, range, safety, and portability.

I recommend... long commuting support, portability, easy maintenance, durability.”
Designer Pa-Ph Inductive “Apart from the needs you mentioned, what other factors might be important for these

users? For example, ease of storage and transportation, such as carrying up stairs or using
an elevator.”

AI Ph-Pa / “Stylish design, smart operation... high-efficiency battery, fast charging.”
Designer Pa-Ph Abductive “Exactly, the point about fast charging is reasonable. Generally, do electric scooters need

special charging stations, or can they be charged with regular AC power? Do they require
batteries or large capacity storage?”

AI Ph-Sa Deductive “They need batteries, but high energy density and compact... Capacity: 9Ah to 30Ah. Battery
Management System needed.”

reasoning utilizes similarities to adapt known solutions to new
contexts and maps causal structures by comparing the conceptual
distance between a source product and the target design problem.
Inspired by the efficient gripping ability of gecko feet, a new type
of robotic gripper incorporates micro-suction technology to handle
delicate objects safely is a typical example. By integrating various
design reasoning methods, designers constrain or backtrack in-
formation in the design space, generating think flows in multiple
directions [47, 73].

Due to differences in design experience, preferred reasoning
methods, and other cognitive variations, both common and person-
alized characteristics can be found in designers’ reasoning styles [52].
For example, experts employ breadth-first reasoning, while novices
adopt depth-first reasoning [16]. Some designers may rely on ex-
periential abstract knowledge and infer patterns from facts, while
others tend to rely on case-driven analogies [3]. Therefore, future
tools for designers should allow flexible use of design methodolo-
gies rather than impose restrictions.

3 Formative Study
To understand the challenges designers face when navigating the
design space with AI and to identify specific strategies that support
DSE, we invited 12 designers to collaborate with GPT-4 on a design
task in this formative study. We focused on three key questions:
(1) What are the patterns of problem-solution co-evolution when
designers and AI collaboratively explore the design space, and how
do the patterns influence the DSE process? (2) Are there differences
in reasoning methods and design styles of different designers when
collaborating with AI, and do these differences impact the DSE
process? (3) What are the patterns of designers’ attitudes in human-
AI collaboration, and do these patterns affect the DSE process?

3.1 Participants and Procedure
We recruited 12 participants (D1-D12; age:𝑀 = 24.33, 𝑆𝐷 = 1.34)
with backgrounds in product design or industrial design. All the
participants had three to five years of experience in design and
were familiar with LLM tools for product conceptual design. Par-
ticipants were required to design a commuting electric scooter
within 45 minutes and produce a viable design solution. During
the task, they had access to the official OpenAI ChatGPT website
platform 1, which utilized the GPT-4 model for text conversations.

1https://chatgpt.com/

They were instructed to think aloud during the process [67]. All the
participants signed informed consent forms and received monetary
compensation after completing the study.

3.2 Methods and Metrics
We evaluated the effects of DSE by assessing the quality of final de-
sign outcomes. Then, we modeled and analyzed the design process
to extract strategies for better DSE. Below, we describe the methods
and metrics we used in these analyses.

For the quality of the design outcomes, we utilized expert rating
methods. The design outcomes refer to textual solutions summa-
rized by participants at the end of the study. Experts evaluated
these outcomes based on two metrics: novelty (𝑁 ) and useful-
ness (𝑈 ) [36, 62]. For each design outcome, the final scores for𝑁 and
𝑈 were calculated as the mean of the experts’ overall scores of the
final designs, scaled from 1 to 7. Details of the quality computation
are provided in Appendix A.1. We also performed Kendall’s W con-
sistency test to ensure consistency among experts. Three experts
with over five years of design experience (E1-E3; age: 𝑀 = 29.33,
𝑆𝐷 = 4.16) were invited. Each expert was provided with an evalua-
tion form that included descriptions of the metrics to illustrate the
rubrics for the rating (Appendix A.2).

For the DSE processes, protocol analysis [21] was employed to ex-
amine transcript segments from think-aloud protocols. Our coding
themes included two parts. First, we categorized the design process
information into four distinct types: problems generated by AI (Pa),
solutions generated by AI (Sa), problems generated by human de-
signers (Ph), and solutions generated by human designers (Sh). To
further explore the dynamics of problem and solution evolution, we
analyzed co-evolution episodes across 16 distinct scenarios, such as
human-generated problems to AI-generated solutions (Ph-Sa), AI-
generated problems to AI-generated solutions (Pa-Sa), AI-generated
problems to human-generated solutions (Pa-Ph), etc. Second, we
investigated and coded the usage of four reasoning methods in
each episode throughout the design process: abductive, deductive,
inductive, and analogical reasoning. Table 1 provides illustrative
examples of episodes from selected categories.

To more intuitively analyze patterns and styles in human-AI
collaboration, we visualized the collaborative DSE process. We
presented the problem-solution co-evolution episodes as nodes ar-
ranged in concentric circular layers, where each layer corresponds
to an iterative design round, and the layers extend outward to indi-
cate increasing iterations. Circular nodes represent problems, while
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Figure 2: Visualizationmethod of the process of collaborative
DSE. The shapes of nodes represent problems or solutions,
and the colors indicate design reasoning methods. Circular
layers denote iterative evolution, with nodes added clock-
wise. Throughout the design process, several think flows are
developed.

square nodes represent solutions. Hollow and solid fills distinguish
whether nodes originated from AI or designers, and different node
colors denote the associated reasoning methods. A series of related
nodes is defined as a “think flow”. Figure 2 shows an example of
this visualization. To quantitatively evaluate how different think
flows influence design outcomes, the quality of the sub-functions
generated within each think flow was also rated by the three ex-
perts. The experts applied the same𝑈 and 𝑁 metrics used for the
overall design outcome.

We conducted statistical analyses to validate the observed pat-
terns and explored relationships between outcome quality and sev-
eral factors, such as the proportion of problem-solution interactions,
the number of reasoning methods employed in a think flow, and the
proportion of designer contribution. We used Pearson correlation
for normally distributed data and Spearman’s rank correlation for
non-normal data, reporting correlation coefficients as 𝑟 . Finally,
we classified designers’ responses to AI suggestions (negative or
positive) to gauge attitudes toward AI collaboration.

3.3 Findings
Expert ratings demonstrated strong agreement on design outcomes.
Specifically, Kendall’s coefficients of concordance (Kendall’s W) are
0.607 for 𝑁 and 0.613 for𝑈 , both statistically significant (𝑝 < .05).
The design outcomes from the 12 designers displayed high novelty
(𝑁 = 5.28, 𝑆𝐷 = 1.38), but there was significant variation in their
usefulness (𝑈 = 2.84, 𝑆𝐷 = 1.90). Examples of the participants’
creation outputs and the associated scores are provided in Appen-
dix A.3. In the following sections, we first describe the observed
characteristics of human-AI collaboration, and then further discuss
possible factors influencing the DSE process.

3.3.1 Challenges of Problem-Solution Evolution During Human-AI
Collaborative Design. Results showed that the frequency of pro-
posed problems and solutions by human-AI teams is comparable
to those of human-human teams. Specifically, designers and AI
collectively mentioned design problems 250 times (59.1%, includ-
ing Pa and Ph) and proposed solutions 173 times (40.9%, including
Sa and Sh), closely mirroring the 55.02% and 44.98% reported for
human-human teams in prior research [73]. Thus, the similarity
in using the problem-solution co-evolution model between AI and
designers suggests that this theory can be transferred to systems
for collaborative DSE as a descriptive framework for the design
space.

Compromise of the DSE process due to infrequent design
space interactions. Figure 3(A) shows that limited interactions
between the problem space and the solution space may hinder DSE,
as evidenced by lower-quality design outcomes. Think flows with
lower-quality outcomes typically exhibit only a one-way transition
from the problem space to the solution space. In contrast, think
flows with higher-quality outcomes often involve four or more
problem-solution interactions. Statistical analyses further support
this observation: the frequency of problem-solution interactions
within a think flow correlated positively with outcome quality, both
for 𝑁 (𝑟 = 0.833, 𝑝 < .01) and𝑈 (𝑟 = 0.801, 𝑝 < .01).

3.3.2 Challenges of Reasoning Methods Usage. The results man-
ifested that designers and AI tend to employ different reasoning
methods. According to the analysis of experimental data, humans
and AI were engaged in reasoning 294 times (See details in Appen-
dix A.4). Among them, abductive reasoning was prevalent in the
problem space evolution, with 84 instances recorded (designers:44,
AI:40). Inductive reasoning also featured prominently, with 51 in-
stances (designers:18, AI:33). In the solution space, deductive (51 in-
stances, designers:10, AI:41) and abductive reasoning (49 instances,
designers:14, AI:35) were more frequently observed. Analogical
reasoning was used the least (only 14 instances, all initiated by
designers), but often led to significant breakthroughs. Next, we in-
troduce two potential challenges arising in human-AI collaborative
reasoning within DSE.

Negative impact of path dependency of reasoning on the
DSE process. Designers often employ consistent reasoning meth-
ods within each design iteration and adhere to a specific logical
sequence across various solutions (“Preferred logic” in Figure 3(B)).
This path dependency may negatively affect the DSE process, as
proved by lower-quality outcomes. Figure 3(A) supports that inte-
grating diverse reasoning methods within the same iteration and
think flow is associated with the enhanced DSE process. Addition-
ally, we counted the number of think flows per participant and
calculated the proportion of flows that included more than three
types of reasoning methods. This proportion showed a significant
correlation with 𝑁 (𝑟 = 0.682, 𝑝 < .05) and a marginally significant
correlation with 𝑈 (𝑟 = 0.567, 𝑝 = .054). Based on these findings,
we suggest avoiding path dependency of reasoning methods to
enhance DSE.

Influence of think flow types on the DSE process. To de-
scribe design styles in reasoning, we categorized three types of
think flow by shape: linear, divergent, and associative (Figure 3(C)).
Designers often combine different think flows in DSE (Figure 3(B)),
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Figure 3: Visualization of the process of collaborative DSE. (A) displays the think flows from which the five highest-rated
and five lowest-rated sub-functions are derived. (B) illustrates some examples, including the main types of think flows that
constitute the node map, designers’ preferences for reasoning methods, and the novelty and usefulness of design outcomes. (C)
shows three types of think flows, including linear, divergent, and associative.

such as linear with divergent (e.g., D11), linear with associative (e.g.,
D4), or divergent with associative (e.g., D7 and D9). However, de-
sign processes dominated by divergent and associative think flows
tend to hinder comprehensive DSE, associating with lower-quality
overall outcomes (𝑁 = 4.33, 𝑈 = 1.92) compared to the average
of the other two types (linear with divergent: 𝑁 = 6.00,𝑈 = 4.32;
linear with associative: 𝑁 = 6.07,𝑈 = 3.31). This may be because
these flows result in a loose design process, making it hard for de-
signers to converge on specific solutions. Therefore, it is advisable
to avoid consistently using divergent and associative reasoning,
instead favoring combinations of linear with divergent or linear
with associative to facilitate a more structured DSE.

3.3.3 Impact of Designers’ Collaborative Attitudes. In Figure 3(A),
we observed that human contributions in the five highest-rated
sub-functions (24 designer contributions: 9 AI contributions) appear
to be more frequent than those in the lowest-rated outcomes (8 de-
signer contributions: 19 AI contributions). However, the proportion
of contributions by human designers did not show a significant cor-
relation with 𝑁 (𝑟 = 0.372, 𝑝 > .05) or𝑈 (𝑟 = 0.177, 𝑝 > .05). Based
on the interviews and experimental observations, this difference
may stem from the dynamic relationship between collaborative at-
titudes in human-AI design, particularly designers’ self-confidence
and their reliance on AI.

Two inappropriate attitudes in human-AI collaboration.
Designers who consistently oppose AI may also hinder sufficient

human-AI interactions in the design space. For example, D7, who
was overly confident and had biases against AI’s suggestions, fre-
quently expressed doubtswith statements like “I think you’re wrong. . . ”
and “I don’t agree. . . ”. This was reflected by an incomplete DSE, as ev-
idenced by the second and third lowest scores (𝑁 = 4.33,𝑈 = 1.26)
in Figure 3(B). Meanwhile, designers who overly rely on AI sug-
gestions to complete designs (e.g., D9) tend to confine themselves
to a narrower design space with an illusion of success [77], which
was also associated with the lowest-quality outcomes (𝑁 = 4.33,
𝑈 = 1.00).

A dynamic relationship between collaborative attitudes
and the DSE process. In AI-assisted DSE, collaborative attitudes
“dynamically change in response to AI’s real-time feedback and de-
sign proposals” (D1 and D5). These changes depend on the quality
of AI-generated content, the transparency of the creation process,
and the alignment with designers’ intentions. A designer’s self-
confidence and reliance on AI typically reflect a self-assessment of
the outcome’s quality. This self-assessment affects the designer’s
exploration of the design space, thereby impacting the ultimate
quality of the solutions. To ensure effective collaboration and pre-
vent over-reliance or overconfidence, AI must provide appropriate
guidance to enhance the DSE process.
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Figure 4: Overview of CoExploreDS. (A) Main Canvas: Designers can add, move, hide, and connect nodes on a mindmap-style
canvas. (B) Bottom Toolbar: Provides tools for node operations and text generation via AI initiated by designers. (C) Real-Time
Design Space Map Display: Shows how AI understands the designer’s process. (D) Quick Assist: For the selected node, it
actively offers AI-generated suggestions (e.g., “Possible Problems” and “Possible Solutions”) based on the design space map and
generation strategies. Clicking a suggestion adds the corresponding node to the main canvas.

3.4 Design Goals
In conclusion, we observed similar problem and solution frequen-
cies between human-AI and human-human teams, indicating the
reasonableness of modeling human-AI collaborative DSE with the
problem-solution co-evolution model. However, for better DSE, we
also identified the necessity of guiding AI systematically in advanc-
ing the co-evolution process and prompting designers to adopt
appropriate collaborative attitudes. Based on previous findings, we
defined three design goals (DG) to develop a system that enables
collaborative DSE between designers and AI.

• DG1: Increase the frequency of interactions between
problem space and solution space. The system should
facilitate more frequent exchanges between the problem
space and the solution space to improve the iterative design
process, ensuring that solutions are continuously refined
and aligned with evolving problem definitions.
• DG2: Utilize various reasoning methods within the
same iteration or think flow. The system should encour-
age designers to integrate multiple reasoning methods to
comprehensively explore the design space. In addition, it
should guide designers to avoid combining divergent think-
ing with associative thinking flows, which may lead to an

overly loose exploration process that hinders the ability to
converge on definitive solutions.
• DG3: Provide an appropriate mode of AI intervention.
The system is supposed to guide designers to adopt suitable
attitudes toward AI, such as self-confidence and reliance
appropriateness, thereby avoiding limited DSE caused by
biases or illusions.

4 CoExploreDS
We developed CoExploreDS, a system designed for human-AI col-
laborative DSE. CoExploreDS leverages the problem-solution co-
evolution model to structurally frame the design space. This system
also incorporates deductive, inductive, abductive, and analogical
reasoning methods to proactively generate problem or solution
suggestions. To differentiate and display problems and solutions,
CoExploreDS uses uniquely styled card-like nodes to clarify their
classification. Designers can actively request AI to generate a prob-
lem node or solution node for a specific node (passive generation) or
apply suggestions actively provided by AI to the canvas (proactive
suggestions). The overview of CoExploreDS is shown in Figure 4,
and it integrates four panels: the main canvas (Figure 4(A)), the
bottom toolbar (Figure 4(B)), a real-time design space visualization
map display (Figure 4(C)), and a Quick Assist panel (Figure 4(D)).
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Figure 5: Pipeline for passive AI node generation instructed by designers. When designers instruct AI to generate new content,
they need to (A) select a node as input and (B) decide whether the node type to be generated is a problem or a solution.
CoExploreDS’s backend then (C) transforms the user input into structured prompts, including task briefs, requirements, output
criteria, and examples. (D) The newly added AI node is placed on the main canvas and connected to the source node.

4.1 Node-Based Collaborative Design Canvas
CoExploreDS employs a mind map format to organize nodes on the
main canvas (Figure 4(A)), distinguishing between problem nodes
and solution nodes. The mind map format is used on the main
canvas because it effectively organizes design information [26]. De-
signers can drag and zoom the main canvas. To manipulate nodes,
five features are integrated into the bottom toolbar (Figure 4(B)):
creating a new problem node, creating a new solution node, cre-
ating a blank node, connecting two nodes, and instructing AI to
generate content. When designers intend to add new nodes to the
canvas, they are required to first designate a node as the parent
node. Once a new node is added, it automatically links to its parent.
To connect two nodes, designers select a source node and then a
target node, creating a directed link. This linking process aids in
clarifying designers’ thought processes and helps AI understand
the relationships between the nodes envisioned by the designers.

Figure 5 illustrates the pipeline for passive AI node generation.
Designers can instruct AI to generate either a problem node or a so-
lution node based on a specific node. When designers instruct AI to
generate new content, they must select a node as input (Figure 5(A))
and decide whether the node type to be generated is a problem
or a solution (Figure 5(B)). CoExploreDS’s backend transforms the
user input into structured prompts. Based on prior studies [60], the
prompts for content generation include task briefs, requirements,
output criteria, and examples (Figure 5(C)). The newly added AI
node is placed on the main canvas and connected to the source
node (Figure 5(D)).

4.2 Design Space Structured Visualization Maps
CoExploreDS visualizes the collaborative DSE process in the de-
sign space structured using layered maps (Figure 4(C)). The nodes’
forms and meanings in these maps follow the approach described
in Section 3.3.2. Node shapes indicate whether a node is a Problem
or a Solution, while the fill status (solid or hollow) denotes whether
it was manually created by the designer or generated by the LLM.
Connections between nodes are derived directly from the main
canvas, and node colors indicate the reasoning methods used, as
determined by the LLM. Each modification to the main canvas up-
dates the design space map accordingly. These maps are generated
from JSON data that contains all problem and solution nodes and

their relationships. We developed a custom algorithm to establish
adjacency relations and assign levels to each node, producing the
final layered representation of the design space. Pseudocode for
this algorithm is provided in Appendix B.1.

4.3 Proactive Suggestions Based on Design
Space Maps

When designers click on a node, the system will proactively sug-
gest “Possible Problems” and “Possible Solutions” using appropriate
reasoning methods based on the designer’s current think flow and
design content. Specifically, the LLM receives JSON data describing
all problem and solution nodes and their relationships on the can-
vas. Then, the LLM generates suggestions displayed in the Quick
Assist panel. The pipeline for AI to proactively generate sugges-
tions is illustrated in Figure 6 and the pseudocode is provided in
Appendix B.2.

The system identifies the node’s think flow type—linear, diver-
gent, or associative—and generates new nodes accordingly (DG2).
For linear or divergent flows, two new nodes are generated at the
same level and sub-level to help designers explore comprehensively.
For associative flows, four nodes are generated at the sub-level to
prevent a fragmented thinking process. Based on these boolean val-
ues and basic node information, potential positions are generated,
resulting in a list that contains information on which node the new
node will connect to.

Additionally, when the selected node is a problem node, more
“Possible Solutions” are actively provided to promote interactions
between the problem space and the solution space; the reverse
applies when editing a solution node (DG1). Then based on the
previous node connected to the one currently being edited by the
designer, the reasoningmethods used for suggestions are prioritized
as follows: for generating “Possible Problems”, the priority is abduc-
tive > inductive > deductive; for generating “Possible Solutions”,
the priority is deductive > abductive > inductive. An analogical
reasoning suggestion is also always generated, regardless of the
type (DG2). To avoid fostering an inappropriate collaborative atti-
tude, CoExploreDS enhances collaboration transparency through
the design space map and strengthens the designer’s agency with
proactive and passive AI assistance (DG3).
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Figure 6: Pipeline for proactive AI suggestions in the Quick Assist panel. When a designer (A) edits a node card on the main
canvas, CoExploreDS receives input. The system then (B) determines the type of think flows to which the node belongs, (C)
determines the generation location, (D) assesses whether the node is a problem or a solution, and (E) identifies the new nodes’
reasoning methods before generating outputs.

Finally, CoExploreDS adds the generated suggestions to the list
of all possible node generation information for return. All the gen-
erated suggestions will be shown in the Quick Assist panel. Each
suggestion card indicates the position, reasoning method, problem
or solution type, and specific content. Suggestions are added to the
canvas only when the designer clicks on them.

4.4 Implementation
CoExploreDS is a web-based platform developed with a ReactJS2
front-end and a Flask3 back-end. It utilizes Ant Design4 for styling.
Text generation is managed by GPT-45 through the OpenAI API,
chosen for its nuanced understanding of user intents and capability
in handling complex tasks. Technical pre-testing has demonstrated
the GPT model’s high accuracy in identifying reasoning methods
and understanding the problem-solution co-evolution.

5 User Study
To validate the effectiveness of CoExploreDS in supporting human-
AI collaborative DSE, we conducted a between-subjects experiment
with 32 participants against a baseline system. Specifically, we
raised the following research questions:

• RQ1: Can CoExploreDS systematically support DSE with
lower efforts of human-AI collaboration?
• RQ2: Can CoExploreDS appropriately affect designers’ self-
confidence and reliance onAI during human-AI collaborative
DSE?

2https://react.dev/
3https://flask.palletsprojects.com/
4https://ant.design/
5https://openai.com/gpt-4

5.1 Participants and Procedure
We recruited 32 participants (P1-P32; age: 𝑀 = 23.91, 𝑆𝐷 = 1.23)
via social media, each with over three years of product design
experience and no prior involvement in the formative study. All
the participants were evenly divided into two groups, ensuring
comparability regarding age, design experience, and gender. De-
mographics of participants and their groupings are provided in
Appendix C.1. The baseline system used was a simplified version
of CoExploreDS, retaining only the mindmap function and basic
AI generation capabilities, with the “co-evolution” and “reasoning
patterns” functionalities removed (Appendix C.2). In the baseline
system, the text content of a user-selected node was used as a
prompt to retrieve GPT-generated responses via an API, which
were then displayed on the canvas in a new node. The 60-minute
procedure is outlined below:

Introduction (10min). Participants signed an informed con-
sent form and were introduced to the study context. Subsequently,
participants watched the tutorial video for either CoExploreDS or
the baseline system according to their assigned group. P1 to P16
used CoExploreDS, while P17 to P32 used the baseline system.

Ideation (30min). Participants in the two groups completed a
30-minute ideation task using either CoExploreDS or the baseline
system. To eliminate potential task-related biases, half of the par-
ticipants worked on Design Task A, while the other half worked on
Design Task B. Design Task A was to design a delivery drone for
urban and suburban areas. Design Task B was to design a household
food processor capable of quickly performing tasks such as mixing
and cooking ingredients.

Post-experiment Survey (20min). Participants were required
to fill out a questionnaire and undergo a semi-structured interview
at the end (Appendix C.3). All the participants received monetary
compensation of RMB 50 after completing the study.
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5.2 Methods and Metrics
To evaluate the final effects of the DSE process, we assessed the qual-
ity of design outcomes and discussed CoExploreDS’s role in enhanc-
ing creativity using the Creativity Support Index (CSI) scale [12].
Additionally, the same three design experts mentioned in Section 3.1
were enlisted to rate the design outcomes. The rating form for ex-
perts was also the same (Appendix A.2). The overall scores of design
outcomes (i.e., 𝑁 and𝑈 ) were measured through self-assessments
and expert evaluations to ensure reliability, consistent with the
methods described in Section 3.2. The same DSE process visualiza-
tion was also used in the user study.

Then we employed targeted metrics for each RQ. For RQ1, the
System Usability Scale (SUS) [5] evaluated information usability
during the design process, and the weighted overall score of the
NASA Task Load Index (NASA-TLX) [33] evaluated designers’ ef-
fort expended in the collaboration. For RQ2, a seven-point scale
measured designers’ confidence and reliance (Appendix C.4).

For quantitative data comparing CoExploreDS and the base-
line system, we initially assessed distribution normality using the
Shapiro-Wilk test. For normally distributed data, independent-sample
t-tests were conducted to compare group means, with the assump-
tion of equal variances validated using the F-test. For non-normal
datasets, we applied the Mann-Whitney U test. Qualitative data
from interviews were coded into themes to explain quantitative
data further.

6 Result
Results indicated that CoExploreDS facilitated human-AI collab-
orative DSE, as demonstrated by significantly improving design
outcomes and enhancing creativity. Specifically, CoExploreDS en-
abled designers to systematically explore the design space using the
problem-solution co-evolution model and design reasoning meth-
ods, thereby significantly reducing the effort required in human-AI
collaboration. Meanwhile, our system also affected designers’ re-
liance on AI and their self-confidence in human-AI collaboration to
support collaborative DSE. An example of the participants’ design
processes with CoExploreDS is shown in Appendix C.5.

6.1 Generating More Creative Design Outcomes
in DSE

6.1.1 Quantitative Evidence for Enhanced Creativity and Quality
in DSE. In terms of both the quality of its outcomes and the pro-
cesses of DSE, CoExploreDS outperformed the baseline system.
The significantly higher quality of design outcomes generated by
participants using CoExploreDS supported that our system fully
unleashed the potential of human-AI collaboration in DSE (Table 2).
Expert evaluations demonstrate consistency, with Kendall’s W val-
ues for CoExploreDS at 0.60 (𝑁 , 𝑝 < .05) and 0.57 (𝑈 , 𝑝 < .05), and
for the baseline system at 0.757 (𝑁 , 𝑝 < .01) and 0.796 (𝑈 , 𝑝 < .01).
For metric 𝑁 , expert ratings revealed that CoExploreDS achieved a
higher mean score of 5.00 compared to the baseline’s 4.68, with a
p-value of .033. The participants’ self-reported 𝑁 was also higher in
the CoExploreDS system than in the baseline system (5.31 vs. 4.69),
with a p-value of .018. Similarly, for metric𝑈 , CoExploreDS showed
higher mean scores in self-assessment (2.98 vs. 2.69; 𝑝 < .05) and
expert ratings (3.19 vs. 2.78; 𝑝 < .05).

Table 2: Comparison of self-assessment and expert ratings
of design quality between CoExploreDS and the baseline
systems (*: 𝑝 < .05).

Self-Assessment Expert Rating
CoExploreDS Baseline CoExploreDS Baseline

𝑁

𝑀 5.31 4.69 5.00 4.68
𝑆𝐷 0.87 0.48 1.20 1.91
𝑝 .018(*) .033(*)

𝑈

𝑀 2.98 2.69 3.19 2.78
𝑆𝐷 1.27 0.71 1.03 0.38
𝑝 .030(*) .029(*)

Figure 7: Results of the CSI questionaires (-: 𝑝 > .05, *: 𝑝 < .05,
**: 𝑝 < .01, ***: 𝑝 < .001).

For the design process, the CSI results indicated that CoEx-
ploreDS (𝑀 = 74.34, 𝑆𝐷 = 9.00) significantly enhanced creativity
compared to the baseline system (𝑀 = 66.63, 𝑆𝐷 = 9.94), with a
p-value of .028. This demonstrates CoExploreDS’s impact on fos-
tering creativity over the baseline system (Figure 7). CoExploreDS
supported more frequent co-evolution episodes (39.63 instances per
participant) than the baseline system (34.94 instances per partici-
pant). Although the baseline generated fewer nodes, the difference
between the two groups was not significant (𝑝 > .05), suggest-
ing that the impact of the QuickAssist and design maps extended
beyond merely accelerating the design process. Additionally, all
participants demonstrated at least three different combinations of
design reasoning methods when using CoExploreDS. In contrast,
their reasoning predominantly adhered to similar ideation logic in
the baseline system.
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Figure 8: Design quality and design space maps of several participants when using CoExploreDS and the baseline system.

6.1.2 Underlying Reasons for Improved Creativity andQuality. In-
terview results showed that participants generally praised CoEx-
ploreDS for its suggestions’ quality and proactive interactions in
supporting DSE. P13 noted, “Thanks to the application of various de-
sign reasoning methods, the content generated by AI in CoExploreDS
is more diverse.” P7 also added, “New content continuously emerges
during the iterative process between problem space and solution space
in CoExploreDS.” Meanwhile, P15 mentioned, “An AI that proactively
interacts at key moments can greatly boost creativity compared to
working alone.” In contrast, participants using the baseline system
expressed concerns regarding the AI’s limitations in relevance and
the alignment of generated content with design needs. For example,
P24 and P27 stated that AI primarily “performed knowledge reloca-
tion without considering the feasibility of the solutions.” Additionally,
four participants observed that “the content provided by AI lacked
depth and was often impractical.” P24 further remarked that “the
AI’s suggestions were overly focused on technical aspects, leading to a
deviation in my design process.”

6.1.3 User Cases for Better DSE. Considering a fair and represen-
tative comparison, participants with scores of 𝑁 and𝑈 close to the
mean of the group were selected as typical cases to examine the ef-
fects of CoExploreDS and the baseline system on DSE (Figure 8). Us-
ing CoExploreDS to complete the DSE, P6 (Expert rating: 𝑁 = 5.33,
𝑈 = 3.46) and P11 (Expert rating: 𝑁 = 5.67, 𝑈 = 3.26) employed
various reasoning methods within the same iteration or think flow
and had frequent interactions between problem spaces and solu-
tion spaces. Furthermore, the four reasoning methods—abductive,
inductive, deductive, and analogical reasoning—appeared in a more
random order during their DSE process. For example, P6 considered
why drones have not yet been widely adopted and identified the
question of “how to control costs and improve delivery efficiency”
(abductive reasoning). AI proposed a solution centered on “finding
a balance among material costs, body weight, rotor size, and battery
motor configuration” (deductive reasoning). After multiple itera-
tions, P6 deduced a sub-function of “providing modular cargo boxes
and hooks for different types of goods” to meet various needs and
reduce operational costs. However, P19 (Expert rating: 𝑁 = 4.67,
𝑈 = 3.32) and P26 (Expert rating: 𝑁 = 4.33, 𝑈 = 2.95) using the
baseline system demonstrated more one-way transitions from prob-
lems to solutions, and the think flows on the maps usually consisted

of fixed sequences of reasoning methods. P26 commented that “AI
directly provides solutions rather than guiding the designer’s think-
ing” and that “sometimes the AI’s contributions lack thoughtfulness
or feasibility.” All these findings further validated the strategies
proposed for better collaborative DSE in our formative study.

6.2 Supporting Systematic DSE with Lowered
Collaboration Effort

6.2.1 Quantitative Evidence for Lowered Collaboration Effort. Ac-
cording to the SUS standard, both CoExploreDS (𝑀 = 81.88, 𝑆𝐷 =

11.49) and the baseline system (𝑀 = 73.90, 𝑆𝐷 = 8.19) achieved
usability scores above the acceptance threshold of 70. CoExploreDS
scored significantly higher in usability than the baseline system
(𝑝 < .05). As suggested by NASA-TLX scores, CoExploreDS (𝑀 =

36.54, 𝑆𝐷 = 10.99) also significantly outperformed the baseline
system (𝑀 = 54.85, 𝑆𝐷 = 13.12) for workload (𝑝 < .001). This result
demonstrates that designers expended considerably less effort in
human-AI collaborative DSE using CoExploreDS.

6.2.2 Underlying Reasons for Enhanced Effect. We concluded three
reasons for the lowered collaboration effort. First, CoExploreDS
“provides information closely aligned with the design intent” (P1, P5,
P6). Second, the design space map in CoExploreDS “helps designers
identify and address potential gaps in their thinking, reducing the
cognitive load needed” (P8, P11). “When unsure what to do next, I
open the map and turn to expand the shorter think flows” (P2, P8,
P14). Third, CoExploreDS is more responsive, “aligning better with
the typical iterative design process that moves between problems and
solutions” (P7, P16), and “It actively suggested more relevant problems
related to my proposed solutions as I developed them” (P2). In contrast,
the baseline system required designers to actively engage in a back-
and-forth with AI to advance the design process. P19 remarked that
the system “could not effectively follow the designer’s thought process,
particularly when the thinking was broad or highly non-linear”.

6.2.3 User Cases for Systematic and Effective DSE. We compared
design space maps between two systems and analyzed participants
with NASA-TLX scores near the group mean to demonstrate CoEx-
ploreDS’s support for collaborative DSE processes. Figure 9 displays
NASA-TLX scores and design space maps for participants using
CoExploreDS and the baseline system. In the design space maps
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Figure 9: Example results of NASA-TLX scores and design space maps.

of P8 and P21, the number of iterations was similar, yet P8 with
CoExploreDS experienced a lighter workload (36.0) compared to
P21 with the baseline system (51.7). Both participants were highly
sensitive to Mental Demand, weighing 4 and 5. P8 using CoEx-
ploreDS noted that “AI acts like a vast knowledge base, uncovering
unexpected ideas. It offers expertise on drones and draws from design
experiences in other fields. This reduces my workload as I only need to
filter, assess, and iterate on these suggestions.” In contrast, P21 using
the baseline system noted, “AI provides little substantive content
and often repeats the same information, requiring me to exert more
effort.” In the design maps of P9 and P19, the differences in NASA-
TLX scores likely stemmed more from Performance and Frustration
Levels. P9 mentioned, “Using CoExploreDS made the design process
smoother. When considering a problem, CoExploreDS anticipated my
need and generated more solutions, giving me more time to iterate
and improve my designs.” Prior research suggests design ideation
relies on long-term memory retrieval [57], and that capturing and
curating design information is crucial for process improvement [40].
By framing and advancing the DSE process, CoExploreDS enables
designers to retrieve and integrate design information with fewer
cognitive resources, allowing for greater focus on creation.

6.3 Affecting Designers’ Self-Confidence and
Their Reliance on AI Appropriately

6.3.1 Quantitative Evidence for Attitude Appropriateness. As shown
in Figure 10(A), participants using CoExploreDS reported signifi-
cantly higher self-confidence in their design outcomes (𝑀 = 5.44,
𝑆𝐷 = 0.73) compared to those using the baseline system (𝑀 = 4.75,
𝑆𝐷 = 0.93), with a p-value of .038. Additionally, we observed a
higher level of reliance on AI (𝑀 = 5.63, 𝑆𝐷 = 1.31) in comparison
to the baseline system (𝑀 = 4.49, 𝑆𝐷 = 0.93), with a p-value of .023.

6.3.2 Relationship Between Attitudes and the DSE Process. To in-
vestigate how human reliance on AI and self-confidence influence
DSE within CoExploreDS, we generated scatter plots. As described

in Section 5.2, we chose the quality of design outcomes to quan-
tify the effectiveness of the DSE process. Figure 10(B) illustrates
the relationships between design quality and reliance on AI, and
Figure 10(C) depicts the relationship between design quality and
self-confidence. Design quality is quantified as the sum of 𝑁 and𝑈
rated by experts. The scatter plots are divided into four quadrants
based on the mean values of CoExploreDS and the baseline system.

In Figure 10(B), participants using CoExploreDS demonstrated
greater reliance on AI, yet their design quality was higher, with
most falling within the “High Quality” Quadrants B1 and B2. In
contrast, 11 participants using the baseline system clustered in
Quadrants B3 and B4, showing lower design quality. This outcome
underscores the effectiveness of CoExploreDS in unlocking the
creative potential of human-AI collaboration. Participants discussed
reasons for this. When ideating with the baseline system, P18, P30,
and P31 noted that the AI “lacked proactive guidance, requiring
designers to generate ideas first before instructing the AI. By that
point, the designers had already formulated the ideas themselves,
leaving the AI unable to contribute spark thoughts.” In contrast, with
CoExploreDS, participants “frequently utilized AI and effectively
guided it to generate more valuable suggestions” (P1, P3, P15).

Ideally, if the quality and process of AI-generated content meet
the designers’ expectations, their self-confidence should correspond
to the actual quality of the design, thus promoting a beneficial DSE
environment that yields higher-quality solutions. In Figure 10(C),
Quadrant C1 represents the “High Confidence-High Quality” sce-
nario, the optimal state for human-AI collaboration. This quadrant
includes five participants using CoExploreDS, compared to only one
participant using the baseline system. Four participants using CoEx-
ploreDS fall into Quadrant C2, the “Low Confidence-High Quality”
area, yet their confidence levels remain relatively high (around 5
points). Conversely, seven participants using the baseline system
predominantly cluster in Quadrant C4, indicating generally lower
confidence and design quality.
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Figure 10: Self-reported evaluation results for CoExploreDS and the baseline system. (A) Scores of reliance on AI and self-
confidence with 95% confidence intervals (*: 𝑝 < .05). (B) Scatter plot of design quality versus reliance for both systems. (C)
Scatter plot of design quality versus self-confidence for both systems. In (B) and (C), design quality is represented by the sum of
𝑁 and𝑈 as rated by experts.

7 Discussion
We propose CoExploreDS to support human-AI collaborative DSE
by framing and advancing human-AI collaborative DSE through the
problem-solution co-evolution model and design reasoning meth-
ods. Based on our findings, we suggest some design implications
for future human-AI collaborative creativity support systems.

7.1 Freeing Designers from Consciously
Following Design Methodologies with AI
Assistance

Designers often engage in extensive theoretical study and practical
training to master navigation through ambiguous and dynamic
design spaces [66]. While in practice, designers often depend more
on their experience and intuition than on strict adherence to valu-
able methodologies in complex and varied practices [54]. In our
studies, all participants acknowledged the principles and utility
of design reasoning methods, yet nearly all lacked awareness of
their utilized methods, with only two recalling their methodologies
accurately in the post-survey. This suggests that methodologies are
often implicitly integrated into the designer’s experiential intuition
in their daily work [2].

While such synthesis can enhance problem-solving efficiency by
allowing designers to act fluidly, it may also lead to overly “oppor-
tunistic” ideation, particularly in complex design practices where
uncertainty is prominent [16]. In short-term thinking, designers
may inadvertently overlook certain considerations, requiring struc-
tured methodologies to supplement and guide the process. There-
fore, design involves an adaptive combination of both structured
and opportunistic processing, where the dynamic balance between
the two enables designers to navigate uncertainty and complexity
effectively [68].

To accommodate the characteristics of design, our work pro-
poses a flexible solution: AI can subtly guide designers in adhering
to methodologies rather than “directly generating complete, logically
unverifiable solutions” (P6). This approach liberates cognitive re-
sources, enabling designers to focus on exploring solutions without
the burden of consciously following methodologies. Additionally,

designers avoid the challenge of issuing precise instructions for AI
to understand their thought processes [76]. This solution can also
alleviate widespread concerns about AI-based creativity support
systems to rapidly produce large-scale, low-cost design solutions
that may encroach on designers’ space [1, 51]. Our study highlights
two benefits of this guidance. Firstly, it promotes personalization
in the design process, as evidenced by the distinct stylistic char-
acteristics in participants’ design space maps. Secondly, it ensures
higher-quality outcomes in DSE.

7.2 Transferring Systematic Thinking to Other
Human-AI Collaboration Innovation Tasks

The results showed that CoExploreDS enhanced DSE through AI
suggestions based on design space maps, thereby validating key
design goals proposed in our formative study. Guided by problem-
solution co-evolution and design reasoning methods, the systematic
thinking offered by design space maps facilitated a comprehensive
understanding of the collaborative design process, enabling AI to
“generate more contextually relevant and innovative suggestions” (P1,
P5, P6). This systematic thinking also “promoted creativity by iden-
tifying connections and insights that may be overlooked with a more
localized approach” (P11). When designers unconsciously become
overly immersed in either breadth-first or depth-first search, the
proactive suggestions at different levels of the think flows can en-
courage them to adopt a more systematic perspective.

Systematic thinking is essential for fostering creativity within
human-AI collaborative innovation tasks. These tasks often demand
high levels of innovation within multiple constraints [4, 66]. Thus
merely recording and reusing previous designs falls short for AI, as
this approach inadequately addresses the complexities of current
design challenges [70]. As a potential solution, AI equipped with
systematic thinking could flexibly and effectively integrate breadth-
first and depth-first design strategies in a context-sensitive way,
aligning with the better design thinking methods recognized by pre-
vious researchers [2]. This approach ensures the co-development
of problem frames while facilitating a balanced search for solution
alternatives. Similarly, researchers have proposed other solutions,
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such as improving DSE to discover unexpected regions and assist
workflows [17, 82], or providing comprehensive frameworks span-
ning macro to micro levels [64]. These methods have already been
applied to other high-demand human-AI collaborative innovation
tasks, including user interface and user experience design [46] and
creative writing [64].

For more general collaborative tasks between humans and AI,
systematic thinking provides a structured approach that benefits
complex human-AI interactions. For instance, researchers devel-
oped CoQuest to facilitate interdisciplinary research and investi-
gated the role of systematic thinking in interaction designs [49].
Similarly, researchers have highlighted the importance of system-
atic support in complex medical decision-making, where human-
centered AI assists experts in intermediate stages such as hypothesis
generation and data gathering, rather than focusing solely on fi-
nal decisions [78]. In broader scenarios, systematic thinking can
enhance decision-making processes, improve task efficiency, and
help humans and AI navigate complex problems.

7.3 Affecting Human Reliance and
Self-Confidence Appropriately with
Collaborative AI

In the formative study, we observed that designers’ over-reliance
on AI or inappropriate overconfidence negatively impacts the ef-
fects of DSE. In CoExploreDS, guided by design methodologies, AI
generates more targeted suggestions. Designers not only increased
their reliance on AI assistance in CoExploreDS but also boosted
their self-confidence, leading to improved design outcomes.

When collaborating with AI, human reliance and confidence
exhibit complex dynamics, depending on how designers construct
and calibrate their own capability models and those of the AI [58].
For example, designers’ self-confidence can increase when their
opinions are validated, either through positive reinforcement from
AI or by successfully identifying and excluding erroneously gener-
ated content [53]. In practice, factors such as individual cognition
and AI interpretability can influence this dynamic balance. From the
designer’s perspective, prevalent overconfidence in human decision-
making [39] may manifest as an “ownership bias”, where designers
demonstrate an excessive preference for their own ideas, poten-
tially overlooking better alternatives suggested by others [59]. This
heightened confidencemay in turn raise the risk of decision-making
errors [58]. From the AI’s perspective, satisfactory results during
the early stages of collaboration can help designers form a pos-
itive first impression, leading to greater reliance on the AI [58].
Without stronger interpretability, designers may overestimate AI’s
capabilities, which may lead to missing potential opportunities.

Therefore, appropriately influencing human reliance on AI and
self-confidence involves finding the optimal middle ground where
designers can confidently trust their judgment and ensure their self-
assessment corresponds to the actual quality of the design (“High
Confidence-HighQuality” scenario in Section 6.3). Researchers have
proposed several recommendations for future AI-assisted decision-
making systems, including making confidence calibration a default
setting, emphasizing the cost of decision errors, and encouraging
designers to approach problems from the opposite perspective [50].

However, for designs involving complex decision-making and rea-
soning processes, decision-making errors cannot be directly quan-
tified through metrics; instead, they are often implicitly reflected
in the final or intermediate design outcomes. In light of this, we
proposed two additional design considerations for future human-AI
collaboration design tools:

• User-centered visualization of AI “black-box” generation.
This involves organizing AI-generated results in a way that
is comprehensible to users, presenting them through intu-
itive interaction methods and logical content structures. The
reasoning process should be broken down and visualized
step-by-step, enabling users to build an accurate AI capabil-
ity model and enhancing interpretability.
• Establishment of an AI self-evaluation system. For instance,
providing self-assessments of novelty, practicality, design
quality, and other metrics alongside the generated results.
Multi-agent collaboration could be introduced as a potential
solution to enhance the quality of AI outputs while offering
designers referenceable self-reported evaluations from AI.

7.4 Limitations and Future Work
The inherent complexity of product design has consistently made
assisting designers in addressing intricate tasks a challenge. Our
work cut in from a perspective informed by established design the-
ories, constructing the design space for human-AI interaction in
terms of problems and solutions. This representation encompasses
key considerations such as target users, client requirements, cost
constraints, aesthetics, and functionality. Previous studies have
proposed other assistance approaches, such as leveraging knowl-
edge graphs [48], providing case-based recommendations [37], and
applying invention-theory principles [45]. Additionally, some re-
search has explored visualizing semantic relationships within the
existing design space to provide content-related suggestions [6, 42].
However, our work and these studies are all limited in scope for
focusing on one specific approach. Future work could integrate
multiple methods. For instance, we could incorporate semantic
information into the design space map and visualize the logical
relationships between nodes. This enhancement would enable both
designers and AI to more deeply consider specific dimensions of
the design solutions.

Considering the dynamic and chaotic nature of ideation, another
aspect such systems should consider is minimizing cognitive load
for designers and uncovering deeper unconscious information. For
instance, several participants suggested enhancing the system’s au-
tomation, including support for automatic convergence and rating
by LLMs. We plan to incorporate these features in future systems
to effectively assist designers in understanding their current explo-
ration. Additionally, our system is limited to capturing only textual
intentions, inadequately representing the multimodal dimensions
of the DSE process [25, 44]. The design methodologies employed
also fail to capture crucial aspects that exist solely in designers’
minds, such as non-logical reasoning, intuitive insights, and trait
knowledge. Future research needs to explore additional methods to
understand and simulate this implicit information to support DSE,
providing a more comprehensive explanation.
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8 Conclusion
In this paper, we explored human-AI collaborative DSE with the
guidance of problem-solution co-evolution and design reasoning
methods. In the formative study, we demonstrated the potential of
LLM as a human-like design partner in DSE, identified key design
styles of human-AI collaboration, and proposed three key strate-
gies. We then developed CoExploreDS which enabled designers
to frame and advance the DSE process with the problem-solution
co-evolution model and design reasoning methods. Our findings
showed that CoExploreDS facilitated human-AI collaborative DSE,
enhancing outcomes and creativity due to two factors: CoExploreDS
facilitated systematic exploration with less effort and appropriately
affected designers’ reliance on AI and self-confidence in collab-
oration. We further discussed how AI assistance could liberate
designers from consciously adhering to design methodologies, ex-
tend systematic thinking to other collaborative innovation tasks,
and influence designers’ self-confidence and reliance on AI in col-
laboration.
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A Details of Formative Study
A.1 Calculation of Design Quality
𝑈 = 𝐿 × 𝑅 × 𝐹 ,𝑈 is calculated as the product of the level of impor-
tance (𝐿), the popularity of product usage (𝑅), and its frequency (𝐹 ).
𝐿 is assessed using a 5-point scale, while 𝑅 and 𝐹 are measured on
a scale from 0 to 1, precise to one decimal place. We performed
Kendall’s W consistency test and linear normalization on the scores
for 𝑁 and𝑈 . Subsequently,𝑈 was converted to a 1-to-7 scale to fa-
cilitate comparison with 𝑁 and to have equal weight in calculating
the sum score of design quality.

A.2 Rating Forms for Experts
The expert rating forms included the following components:

Final Design Problem: The dimensions of product design con-
sidered by the participants during the design process, such as “How

to adapt to different environments?” and “How to design the exter-
nal structure to meet specific functions?”

Final Design Solution: A textual description of the final design
concept produced by the participants.

Novelty: The innovative and unusual features of the product
compared to existing products. For products with multiple func-
tions, each function should be compared individually with the
corresponding functions of existing products.

Usefulness: A product’s usefulness is measured in terms of its
actual use:
• Level of Importance: Products that fulfill more fundamen-
tal human needs are assigned higher values for usefulness
as defined by Maslow’s hierarchy of needs.
• Rate of Popularity of Usage: This refers to the proportion
of users who utilize the product within a specified period,
measuring its popularity.
• Frequency of Usage: The measure of how often the product
is used within a given period.

A.3 Examples of Creation Outputs of
Participants

Table 3 provides examples of the creation outputs and the associated
scores in the formative study. The design task was to design a
commuting electric scooter. To enhance clarity in visualizing how
outcomes correlate with various scores, examples of sub-function
scoring were provided. The evaluation criteria for overall solutions
were identical to those for sub-functions.

Table 3: Examples of the creation outputs of four participants
and the associated average scores.

Metrics Score Examples From Four Participants

𝑁

7.00 The cover on the foot pedal can be opened to reveal a foldable
seat, transforming it into an electric bicycle...

6.67 Automatically adjusts the scooter’s center of gravity based
on road conditions and speed, using sensors...

5.67 Features removable storage modules of varying sizes inte-
grated into the frame...

5.00 Equipped with a find-my-scooter feature, using built-in bells
or flashing lights to help users locate it...

4.33 Fitted with shock-absorbing tires...

3.67 Equipped with a smartphone holder...

𝑈

7.00 The front fog light can be detached and used as a flashlight...

4.10 The scooter’s weight is controlled to be under 10 kilograms,
and it can be folded to fit into a backpack...

3.10 The cover on the foot pedal can be opened to reveal a foldable
seat, transforming it into an electric bicycle...

2.36 Equipped with a find-my-scooter feature...

1.21 It features unique hub patterns and interchangeable colors...

1.00 The handlebars, deck, and stem are all foldable...

A.4 Design Reasoning Methods Observed in DSE
Table 4 illustrates the different design reasoning methods used
by both designers and AI during the human-AI collaborative DSE
process. It shows how often each reasoning method—deductive,
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inductive, abductive, and analogical—was applied, along with the
specific counts for problems and solutions in both roles. Unrecorded
co-evolution episodes primarily involved simple queries or content
lacking clear reasoning methods.

Table 4: Design reasoning methods in human-AI collabora-
tive exploration

Role Reasoning Total Problems Solutions

Designers

Deductive 17 7 10
Inductive 24 18 6
Abductive 58 44 14
Analogical 14 5 9

AI

Deductive 54 13 41
Inductive 52 33 19
Abductive 75 40 35
Analogical 0 0 0

B Details of CoExploreDS
B.1 Algorithm of Design Map Visualization
The method for constructing the design space visualization map is
shown in Algorithm 1. The inputs of the method include the root
node 𝑟 (descriptions of the design task), and the set of all edges E.
Each edge is defined by a list that includes two connected nodes
(with details such as node ID, type, and inference method) and the
connection type (either user-defined or automatic). The root node
is usually the source problem node. The algorithm outputs both an
adjacency graph G and a level-layered graph N𝑙 . The adjacency
graph lists adjacent nodes for each node, while the level-layered
graph organizes nodes by levels. For visualization, node positions
are determined from the level-layered graph, and connections are
drawn based on the adjacency graph. Finally, get an image of the
design space map 𝐼𝑀𝐺G . The design space map construction al-
gorithm first establishes adjacency for all nodes, then builds the
level-layered graph using an improved Breadth-First Search algo-
rithm.

Algorithm 1: Design Space Visualization Map Construc-
tion
Input: The root node 𝑟 , the set of all edges E
Output: Adjacency graph G, level-layered graph of nodes N𝑙 , visualization

image of design space map 𝐼𝑀𝐺G
1 G ← 𝐷𝑖𝑐𝑡 (𝐿𝑖𝑠𝑡 ) , N𝑙 ← 𝐷𝑖𝑐𝑡 (𝐿𝑖𝑠𝑡 )
2 for 𝑒 in E do
3 G.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒 ) // Add nodes information of E into G
4 𝑞← 𝐷𝑒𝑞𝑢𝑒([𝑟 ,0]) // 𝑞 is the deque of node and its level

5 N𝑣 ← 𝑆𝑒𝑡 () // N𝑣 is the set of nodes have been visited

6 while 𝑞 do
7 𝑛, 𝑙 = 𝑞.𝑝𝑜𝑝𝑓 𝑟𝑜𝑛𝑡 ( ) // 𝑛 is the node of an element of 𝑞, 𝑙 is

the level of 𝑛

8 if 𝑛 not in N𝑣 then
9 𝐴𝑑𝑑 𝑛 𝑡𝑜 N𝑣 𝑎𝑛𝑑 N𝑙 [𝑙] // Mark that 𝑛 has been traversed

and at 𝑙 level

10 if neighbours of 𝑛 not in N𝑣 then
11 𝐴𝑑𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑜 𝑓 𝑛 𝑖𝑛𝑡𝑜 𝑞

12 𝐼𝑀𝐺G ←𝑃𝑎𝑖𝑛𝑡𝐼𝑚𝑎𝑔𝑒(G,N𝑙 )
13 return G, N𝐼 , 𝐼𝑀𝐺G

B.2 Algorithm of Proactive Suggestions
Generation

According to Algorithm 2, the input includes the position of the
selected node 𝑛, as well as the reasoning methods they usedM,
along with the current adjacency graph G and the level-layered
graph N𝑙 which contains the type of problem or solution for both
the node and its parent and sibling nodes. The algorithm outputs a
suggestion information LI .

Algorithm 2: Proactive Suggestions Generation Based on
Design Space Maps.
Input: The node selected 𝑛, the method of adding a nodeM, the design

space map G, level-layered nodes N𝑙

Output: A dict list of suggestion information LI
1 LI = List(dict)
2 _𝑙 ← 𝑖𝑠_𝐿𝑖𝑛𝑒𝑎𝑟 (G,N𝑙 , 𝑛)
3 _𝑑 ← 𝑖𝑠_𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡 (G,N𝑙 , 𝑛)
4 _𝑎 ← 𝑖𝑠_𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 (G,N𝑙 , 𝑛)
// Judge whether the node is linear, divergent, or associative.

5 L𝑝 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (G, 𝑛,N𝑙 , _𝑙, _𝑑, _𝑎) // Get position

information list of generated nodes L𝑝

6 D𝑝 ← 𝐿𝑖𝑠𝑡𝑇𝑜𝐷𝑖𝑐𝑡𝐵𝑦𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (L𝑝 ) // Construction directory of

position and nodes number at 𝑝

7 for I𝑝 in D𝑝 do
8 𝑁 ← D𝑝 [I𝑝 ] // Get number of generated nodes at I𝑝
9 I𝑡 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑇 𝑦𝑝𝑒 (I𝑝 , 𝑁 ) // Get types of generated nodes

at 𝑝

10 if M is ‘Auto’ then
11 I𝑚 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑀𝑒𝑡ℎ𝑜𝑑 (G,N𝑙 , I𝑡 ) // Get methods of

generated nodes at 𝑝

12 else
13 I𝑚 ← [repeatM for 𝑁 times]
14 LI .append({’Pos’: 𝑝, ’Type’: I𝑡 , ’Method’: I𝑚 })
15 return LI

C Details of User Study
C.1 Demographics
Table 5 the demographic information of participants in the user
study. Group A used the CoExploreDS during the design tasks,
while Group B used the baseline system. The sample size for the
user study was determined based on similar studies in the field of
HCI [41, 64, 79].

C.2 Baseline System
Figure 11 shows the interface of the baseline system used for the
user study. The baseline system used was a simplified version of
CoExploreDS, retaining only the mind map function and basic AI
generation capabilities, with the “co-evolution” and “reasoning
patterns” functionalities removed. In the baseline system, the text
content of a user-selected node was used as a prompt to retrieve
GPT-generated responses via an API, which were then displayed
on the canvas in a new node.

C.3 Interview Questions
Participants in Group A were asked the following questions after
completing tasks using CoExploreDS:
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Table 5: Demographics information of participants.

Group PID Age Gender Experience

A

P1 24 Female 3-5 years
P2 24 Female 3-5 years
P3 25 Female >5 years
P4 25 Female 3-5 years
P5 24 Male 3-5 years
P6 24 Female 3-5 years
P7 25 Male 3-5 years
P8 25 Male >5 years
P9 24 Female 3-5 years
P10 24 Female 3-5 years
P11 24 Female 3-5 years
P12 24 Male 3-5 years
P13 22 Female 3 years
P14 22 Female 3 years
P15 23 Female 3-5 years
P16 24 Female 3-5 years

Group PID Age Gender Experience

B

P17 24 Male 3-5 years
P18 24 Female 3-5 years
P19 24 Female 3-5 years
P20 24 Male 3-5 years
P21 29 Female >5 years
P22 23 Female 3 years
P23 23 Female 3-5 years
P24 23 Female 3-5 years
P25 23 Female 3-5 years
P26 23 Male 3-5 years
P27 25 Male >5 years
P28 23 Female 3-5 years
P29 24 Female 3-5 years
P30 24 Female 3 years
P31 23 Male 3-5 years
P32 23 Female 3-5 years

Figure 11: Interface of the baseline system. (A) The main canvas is the same as in CoExploreDS. (B) The bottom toolbar was a
simplified version of CoExploreDS with the “co-evolution” and “reasoning patterns” functionalities removed.

(1) What assistance did the suggestions in the Quick Assist panel
provide? Did it meet your expectations? How did it impact
your design process and the final solution?

(2) What assistance did the system provide when using the AI
generation feature in the bottom toolbar?Was it as expected?
How did it affect your design process and the final solution?

(3) Does CoExploreDS meet your expectations? How would you
like to see it improved?

(4) Discuss the strengths and weaknesses of this system.

(5) Reflecting on your design process, what is your general ap-
proach to design thinking?

(6) Which reasoning methods do you excel at, and which do you
struggle with?

(7) What do you think AI is better at? In which of its reasoning
methods are you more confident?

(8) What role does AI play in your ideation and reasoning pro-
cess?

Participants in Group B were asked the following questions after
completing tasks using the baseline:
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Figure 12: Example of P16’s design process with CoExploreDS.

(1) What assistance did the system provide when using the AI
generation feature in the bottom toolbar?Was it as expected?
How did it affect your design process and the final solution?

(2) Discuss the strengths and weaknesses of this system.
(3) Reflecting on your design process, what is your general ap-

proach to design thinking?
(4) Which reasoning methods do you excel at, and which do you

struggle with?
(5) What do you think AI is better at? In which of its reasoning

methods are you more confident?
(6) What role does AI play in your ideation and reasoning pro-

cess?

C.4 Self-Customized Questionnaires
A seven-point custom questionnaire for collaborative attitudes (RQ2):

(1) In the design process, I rely on AI.
(2) In the design process, I am confident in my results.

C.5 Example of Design Process with
CoExploreDS

Figure 12 illustrates an example of the DSE process with CoEx-
ploreDS.
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