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Abstract
The abilities that recent AI models presented, like multi-modal con-
tent generation and reasoning, allow us to see the possibility of
human-AI collaboration. However, enabling AI to act proactively
and harmoniously in collaboration still faces challenges, and aspects
like the optimal action timing and collaboration dynamism, await
to be explored. Exploring these aspects is important to designing
adaptive AI to enhance the human-AI collaboration experience and
system usability. In this study, we cut in from the collaboration level
and view human-AI collaboration as mixed-focus collaboration to
focus on human’s transitions between independent and collab-
orative works. Grounded on previous studies in human-human
collaboration, we identified four coupling styles and seven types of
transition cues in human-AI collaboration, serving as preliminary
results for future studies. We envisioned how our results could be
further extended to support the design of adaptive AI, hoping to
enhance human-AI collaboration experience and the usability of
collaborative systems.

CCS Concepts
• Human-centered computing→ Collaborative interaction;
Collaborative and social computing theory, concepts and
paradigms.
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1 Introduction
Recent large-scale models allow Artificial Intelligence (AI) to not
only generate and reason multi-modal content in real-time [8, 32],
but also analyze the context to participate in work proactively [18,
20, 22, 25]. These abilities make AI being a collaborator in people’s
work prospective. However, enabling such AI agents to collaborate
with humans harmoniously still faces challenges for bringing possi-
ble interruptions and negatively affect human perceptions toward
AI [17, 19]. Therefore, researchers begin to study the basic aspects
and descriptive frameworks of such collaboration to enhance user
experience and the usability of human-AI collaborative systems. For
example, Kuang et al. [17] explored the optimal timing for AI to de-
tect and propose usability problems, and He et al. [12] modeled the
dynamism of human and AI initiative during a group brainstorming
session to instruct future integration of AI in group work.

Breaking down the collaboration process and looking into de-
tailed aspects facilitate the development of adaptive AI to fit in
the dynamically changing collaboration process, where people’s
performance and knowledge [3, 27, 28], task types and goals [22],
collaboration patterns [14, 23], etc., all change as collaboration
proceed [34]. Existing attempts have implemented adaptive AI au-
tonomy and gained higher team performance in a shared workspace
setting [25], adaptive communication strategies to cater to users’
changing needs and expectations [16, 18], adaptive modeling of user
properties to provide personalized interaction [4], etc. In this study,
we focus on the collaboration patterns in human-AI collaboration,
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Table 1: Dimensions used to categorize and describe coupling styles in different studies.

Focused
Problem

Level of
Engagement

Engaged
Way

Engaged
Area

Subgroup Group
Distribution

Tang et al. [30] ✓ ✓ ✓ ✓
Tuddenham and
Robinson [31] ✓ ✓ ✓ ✓

Isenberg et al. [14] ✓ ✓ ✓ ✓
Brudy et al. [1] ✓ ✓ ✓ ✓ ✓
Neumayr et al. [23] ✓ ✓ ✓ ✓ ✓ ✓
Saffo et al. [24] ✓ ✓ ✓ ✓

aiming at adding insights into future design of adaptive AI that
can adjust its behaviors in the changing and evolving collaboration
process. Inspired by previous research in computer-supported co-
operative work, we view human-AI collaboration as mixed-focus
collaboration, specifically studying how humans transition between
independent and collaborative works when collaborating with AI,
and envision how AI can cater to such transition.

Human-human collaboration often involves mixed-focus collab-
oration, where people transition occasionally between independent
and collaborative works [10, 30]. The collaboration patterns are
thus dynamic during the process, presenting different coupling
styles with divergent behavioral characteristics [14, 23, 30]. We
observed similar phenomena in human-AI collaborations, where
humans sometimes actively collaborated and discussed with AI,
and at other times worked independently and were inclined to
ignore AI. These behavioral differences are often accompanied
by conflict requirements in independent and collaborative works
with separate needs for operations, communications, collabora-
tion, etc. [10, 29, 30]. When working independently, people tend
to focus on interacting with the workspace and their own tasks,
while collaborative works require communications and coordina-
tion between collaborators to solve the same problem [10, 14, 23].
Such phenomena imply a need for AI adaptivity to fit in humans’
changing behaviors and prompt fluid coupling transition, which is
considered necessary for collaborative systems to alleviate collabo-
ration friction [15, 21, 30]. However, to the best of our knowledge,
there is a dearth of studies that support these mixed-focus fea-
tures in human-AI collaboration well, which can serve as one of
the prerequisites for designing adaptive AI behaviors in human-AI
collaborative systems.

Therefore, we view human-AI collaboration as mixed-focus col-
laboration in this study. Our main goal is to identify coupling styles
and coupling transition cues in human-AI collaboration as a pre-
quel to designing adaptive human-AI collaborative systems that
address the challenges brought by the mixed-focus features. Similar
to Muller et al. [22] and Salikutluk et al. [25], our study is contex-
tualized in human-AI collaborative design in a shared workspace
setting, whose process is complex and dynamic [35] and involves
both independent and collaborative work. To achieve our goal, we
first extracted the dimensions for describing coupling styles and
common coupling transition cues based on previous mixed-focus
collaboration studies [13, 23, 24, 30, 31] (§2), then analyzed 12 video
recordings to identify the coupling styles and coupling transition

cues appeared in the human-AI collaboration process (§3). The
analysis generated four coupling styles and seven types of coupling
transition cues (§4), which we used to envision and instruct future
design of adaptive AI in human-AI collaboration (§5).

Our main contributions are three-fold: 1) we demonstrated the
mixed-focus features in human-AI collaboration with empirical
evidence, 2) we identified four coupling styles in human-AI col-
laboration and concluded their characteristics, and 3) We also en-
visioned how these findings could guide the future design of AI
behaviors in human-AI collaborative systems that can adapt to the
evolving collaboration process, hoping to contribute to more fluent
and human-centric collaborative experiences, and enhancing such
systems’ usability.

2 Mixed-focus Collaboration and Coupling
Style

2.1 Definition and Development
Humans transition between independent and collaborative works
in collaboration, described as mixed-focus collaboration [10, 11].
Such transitions are driven by the level of dependency on one’s
collaborators, i.e., how much work people can do before collabo-
rating with others [26]. Since the states of working independently
and collaboratively are not polarized, and instead change along a
continuum [23], researchers use the level of coupling to describe
the overall collaborative states when the level of dependency dif-
fers [26]. That means, when people are coupled more tightly, they
have a higher dependency on each other to advance work, resulting
in more frequent interaction with collaborators. On the other hand,
they depend less on others and interact more with the workspace
and artifact when they are coupled more loosely [10, 14, 23].

Later researchers identified coupling styles to describe differ-
ent levels of coupling through observational studies [30], which
has gone through several iterations and updates to fit in differ-
ent contexts [1, 14, 31], and support the analysis of collaboration
dynamism and the design of collaborative systems [23]. During
this process, the connotation of “level of dependency” has been
gradually clarified and enriched, manifested by the dimensions
for describing coupling styles (Table 1). In the work of Tang et al.
[30] about co-located collaboration using tabletop displays, they
defined six coupling styles considering the differences in collabo-
rators’ focused problems, the level of engagement, engaged areas,
and engaged ways (operation, view, communication). Subsequent
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works mainly extend Tang et al.’s work, with some merging several
styles (e.g., [31]) and others subdividing (e.g. [14]). Brudy et al. [1]
applied this concept to co-located collaboration involving more
than two people and devices, and considered the state of subgroups,
which is also an important dimension considered by Neumayr
et al. [23]. Different from all previous work, Neumayr et al. took
group distribution into consideration and developed a descriptive
framework for analyzing hybrid collaboration, which involves both
co-located and distributed collaborators.

2.2 Coupling Transition
The original goal for identifying coupling styles was for an in-depth
study of human’s transitions between independent and collabora-
tive work [30]. Although such transitions are observed to be rapid
and opportunistic [5, 23, 31], researchers still identified cues that
can trigger people to transition between coupling styles, like watch-
ing collaborators’ gestures and body movements in co-located(-like)
collaborations [30, 31]. Observing such cues and initiating coupling
transition is the result of workspace awareness’s function [11, 31],
but in distributed collaborations where workspace awareness re-
quires extra supporting mechanisms, coupling transition cues can
become more conspicuous. For example, Grønbæk et al. [9] found
people’s reconfiguration of their whiteboards could signal coupling
transitions when collaborating through embodied whiteboards, and
checking for collaborators’ views is considered to stand for tran-
sition and maintain tight coupling. Miller et al. [21] designed an
online collaborative content creation system that enables users
to leave visual traces when peeking at others’ views to support
transitions. Recent studies have leveraged AI to detect students’
learning states (e.g., get stuck) to assist teachers in managing cou-
pling transitions and orchestrating classrooms during collaborative
learning [6, 33]. While humans can transition between coupling
styles by attending to various cues based on their experiences, and
AI can detect transition cues upon proper training, it is still unclear
how can AI manage coupling transition in human-AI collaboration
due to the lack of in-depth study on both the characteristics of
coupling styles and the cues used to manage coupling. Therefore,
this study aims to ground future design of adaptive AI that can
transition fluidly between coupling styles in human-AI collabo-
ration by giving a preliminary conclusion on coupling styles and
corresponding cues when people initiate transitions.

3 Method
3.1 Analysis Materials
We used data from six participants (three females and three males)
in a previous human-AI collaborative design experiment[2] for
identifying coupling styles and coupling transition cues. Partic-
ipants’ ages ranged from 22-24 (𝑀 = 22.83, 𝑆𝐷 = .98), with at
least two years of experience in design and previous experiences
using generative AI. The experiment involved a human-AI collab-
orative design task, where participants were required to design
e-scooter or headphone concepts in a collaborative system. We
conducted the experiment using the Wizard-of-Oz method with a
within-subject setting: two wizards worked jointly to simulate an
AI collaborator working proactively with a designers to propose
headphone/e-scooter concepts, and controlled whether AI would

consider designers’ design activities and current working content when
generating proactive feedback (Figure 1). Since this study aims to
obtain coupling styles and transition cues as many as possible, our
later analysis would not consider the differences caused by the
within-subject variable between the two conditions.

The data we used included 12 experiment recordings and par-
ticipants’ communication histories. Each recording lasted about 40
minutes (segments with errors occurred were excluded), covering
situations including participants communicating with AI through
speech, textual input, and mixed methods to enlarge the diversity
of our coding results.

Figure 1: Experiment setting and data for analysis.

3.2 Analysis Method
Before analysis, the video recordings were first pre-processed to
exclude invalid segments (i.e., talking to experimenters, errors oc-
cur, and experimenters’ management of process), then subdivided
into clips of 90 seconds to judge the transitions more accurately.
Next, we prepared a descriptive coupling style coding scheme (see
Appendix A) based on that of Neumayr et al. [23] using the fol-
lowing two dimensions in Table 1: focused problem and engaged
way. Specifically, we distinguished between different engaged ways,
involving communication and operation. The remaining four di-
mensions were not considered because in our experiment: 1) there
was barely a difference in the level of engagement, 2) AI could not
decide its engaged area, 3) only human-AI dyads were involved, and
4) human-AI collaboration is hard to be treated as either co-located
or distributed collaboration.

Two of the authors analyzed the video recordings to identify cou-
pling styles and extract transition cues. They identified the coupling
styles in each 90-second clip according to the coding scheme, and
were allowed to modify the starting and ending points of the clips,
which were controlled to range in length of 30-120 seconds. The
transition cues were open coded, and two coders aimed to extract
as many diverse cues as possible. Each of them first analyzed one
participant and discussed if new definitions or new coupling styles
emerged until a consensus was reached. Then, the two coders each
analyzed two participants, and cross-checked each other’s analysis
results. Two coders reached a good level of inter-coder reliability
(Cohen’s Kappa = .782) on coupling style identification. They later
discussed discrepancies to achieve a complete agreement iteratively,
leading to the final analysis results.

4 Results
4.1 Identified Coupling Styles
We identified four coupling styles in human-AI collaboration: Dis-
cussion (DISC), On Standby (OSTB), Slightly Collaborated (SCOL),
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Table 2: The analysis results of coupling styles in human-AI
collaboration and corresponding descriptions.

Focused
Problem

Engaged Way
Communication Operation

DISC Same Very frequent Sometimes
OSTB Same Very infrequent Infrequent
SCOL Similar Sometimes Frequent
INDW Related Very infrequent Very frequent

and Independent Working (INDW). Among them, DISC, SCOL, and
INDW originated from DISC, SIDC, and SGP in Neumayr et al. [23],
respectively, for having the same levels of descriptive dimensions,
but whose definitions were adapted to describe collaborative be-
haviors in our context better. OSTB was a newly observed coupling
style. The definitions are detailed below. We consider the first three
(identified with round parentheses) to be tightly coupled, with the
level of coupling descending, and the remaining one (identified
with square brackets) to be loosely coupled. Table 2 presents the
coupling styles described by the aforementioned dimensions.

(DISC): The participant is actively discussing with AI and some-
times operates in the workspace, involving writing or pasting
keywords, drawing simple marks, etc. We further subdivide this
coupling style into Discussion-Mutual (DISC-M) and Discussion-
Unilateral (DISC-U ) considering the differences in whether the
participant cares about AI’s proactive communication.

(OSTB): The participant requires information from AI to proceed
with the design process and reacts immediately after AI generates
information. If the participant has asked AI a question before, (s)he
usually operates in the workspace aimlessly, like dragging the can-
vas back and forth, scrolling the conversation history area rapidly,
etc. when waiting for results In other cases, the participant stops
communicating or operating for not yet deciding on what to do
next, until AI communicates proactively.

(SCOL): The participant sometimes initiates communication
with AI but not very often, while actively working in the workspace
and is inclined to have a shufti at, refer to, or ignore AI’s proactive
communication.

[INDW] : The participant mainly works independently in the
workspace to sketch or organize information and communicates
with AI very infrequently. AI’s proactive communication is usually
ignored.

We also visualized the percentage of time each participant spent
on each coupling style in each condition using the heat map (Fig-
ure 2). Overall, human-AI collaboration was predominantly tightly
coupled (DISC and SCOL), with five participants spending less than
15% of the total time on INDW, which is aligned with previous
studies in human-human collaboration [7, 30]. The OSTB style also
takes up only a small proportion in most cases (five participants
spent less than 7% of the total time), which we inferred to be caused
by the transitional nature of OSTB.

4.2 Identified Cues for Coupling Transition
We recorded 88 coupling transitions and extracted 103 transition
cues from the video recordings. Participants averagely made 7.33

Figure 2: The percentage of time spent on each coupling style.

transitions (𝑆𝐷 = 3.17) in each 40-minute session. We analyzed
the transition cues iteratively using thematic analysis and obtained
two categories and seven codes, including four types of content-
level codes and three types of behavior-level codes (Table 3). The
frequency distribution of each code in different coupling style tran-
sitions is illustrated in Figure 3.

Extra information is required (EI ): 19 transition cues were
categorized into EI. Participants were prone to make coupling tran-
sitions when they needed extra information, including complement-
ing solutions to certain design requirements, confronting problems
beyond their knowledge, and requesting AI to generate images.
These cues were commonly seen when transitioning to OSTB and
SCOL, mostly seen in SCOL→ OSTB and INDW → SCOL, where
participants would simply wait for answers from AI or continue
doing work in hand while attending to AI’s feedback.

Concerned information appears (CI ): 18 transition cues
were categorized into CI. When AI mentions what the participants
find interesting, valuable, or debatable, they might transition from
one coupling style to another. These cues were commonly seen
when transitioning to DISC-M and from DISC-M to DISC-U, and
occasionally seen when transitioning to SCOL.

Previous goal has (not) been achieved (GA ): 18 transition
cues were categorized into GA. Cues in this code were more unpre-
dictable because they were the end of some common sub-tasks and
often appeared without heralds, like obtaining enough information,
ending sketching, ending organizing information, etc. These cues
were scattered in eight types of transitions, but mostly seen when
transitioning from OSTB.

Task step switch (SS ): 16 transition cues were categorized
into SS. Since the experiment set four predefined steps, participants’
coupling styles usually change when they need to proceed to the
next step. Similar to GA, this code was also scattered and identified
in ten types of transitions.

Operation in the workspace increases (OI ): 19 transition
cues were categorized into OI. When participants started to sketch
product concepts, organize existing information, and connect dif-
ferent parts using marks, they were likely to transition to looser
coupling styles. These cues were only seen when transitioning from
tighter to looser coupling styles, mostly seen in DISC-M → SCOL
and SCOL → INDW, where participants depend less on AI outputs
and more on their own thoughts and existing information.

Operate without adding information (WI ): 10 transition
cues were categorized intoWI. These cues were only seen when
transitioning to OSTB, where participants scrolled the canvas and
conversation history area rapidly, modified textarea and images
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Table 3: Thematic analysis results of the extracted coupling transition cues.

Category Code Definition

Content-level

Extra information is required (EI,
𝑁 = 19)

Participants can not proceed with existing information because they do not
understand certain knowledge or hope to proceed quickly. Extra information
(text and image) is necessary.

Concerned information appears
(CI, 𝑁 = 18)

AI mentioned information that the participants were concerned about, be
they reactive or proactive, satisfied or unsatisfied.

Previous goal has (not) been
achieved (GA, 𝑁 = 18)

Participants have a previous goal, like obtaining extra information, sketching,
organizing information, etc., which has (not) been completed or achieved.

Task step switch (SS, 𝑁 = 16) Participants switch from one predefined step to another.

Behavior-level

Operation in the workspace
increases (OI, 𝑁 = 19)

Participants initiate or increase their operations in the workspace, like
sketching, marking, typing, etc.

Operate without adding
information (WI, 𝑁 = 10)

Participants may instigate some operations in the workspace, like scrolling
the canvas or conversation histories back and forth, resizing textarea,
formatting texts, etc., without contributing solid progress.

Cool down (CD, 𝑁 = 3) Participants’ frequency of communication and operation decrease.

without changing their information. This can imply participants
fill the time because they are unable to proceed without AI output.

Cool down (CD ): Three transition cues were categorized into
CD, including elongated communication interval, ignoring AI’s
feedback, and a period without any operation. These cues were
also unpredictable and hard to identify because they often take up
a certain timescale. We only identified them in DISC-U → SCOL
and SCOL→ INDW, where the coupling of human and AI became
looser implicitly over time.

5 Discussion and Future Work
5.1 Guiding the Design of Adaptive AI

Behaviors with Coupling Styles
The identified four coupling styles and the dimensions we used
to describe them can serve as the basis for designing adaptive AI
behaviors. We envision the following two methods for future study
to realize adaptive AI behavior in human-AI collaboration:

Behavior-level Adaption: The two dimensions, focused prob-
lem and engaged ways, can be translated to certain parameters
when designing AI behaviors. For example, “focused problem” can
be linked to the range of contexts AI uses for generation. When
tightly coupled, AI should analyze collaborator’s current focus to
stay relevant and avoid adding too much weight to less related in-
formation. Contrarily, AI can incorporate a wider range of context
from memories to consider more comprehensively or divergently
if the focused problems between human and AI are just related in
general. Moreover, the dimension “Engaged Way” can impact the
output style, where shorter sentences with oral style may be optimal
when communicating frequently, while longer paragraphs neatly
organized in bullet lists may be preferred when richer information
is expected in looser coupling.

Pattern-level Adaption: While behavior-level adaption can be
too finely-grained and might be hard to decide the performance
of each behavior in a short time, we can also consider combining
several behaviors to form behavioral patterns for AI, and adapt in
a more coarse way. The setting of behaviors in each pattern can

refer to Table 2. Designing behavioral patterns benefits from fewer
possible choices when making decisions to transition, and each
pattern can be matched with a set of situations to further speed up
decision-making. The drawback of this method is also apparent:
less flexible and more demanding when fine-tuning the optimal
parameters for each pattern.

However, AI does not necessarily need to abide by behaviors
defined in current coupling styles originating from human-human
collaboration. Our observations suggested that AI can assist in cer-
tain tasks that were not described in previous studies. For example,
we found participants frequently copying and pasting information
when actively discussing with AI (DISC), then taking time to orga-
nize it. Since current AI models are good at refining information,
AI can help refine and organize information while still being able
to actively discuss with people, which can not be achieved by a
single person in human-human collaboration. Another case is that
participants experience a long time waiting without proceeding
the design process in OSTB, caused jointly by AI’s slow generation
speed and participants’ lack of specific knowledge. Future design
of AI behaviors in OSTB should seek to optimize user experience
in this process by, for example, optimizing AI’s workflow to allow
pre-generation, apply word-by-word generation, etc.

5.2 Challenges in Transitioning Between
Coupling Styles

Although we have identified seven transition cues, enabling AI to
autonomously adapt to different coupling styles in collaboration
still poses challenges due to the difficulties in recognizing transition
cues and determining the timing to initiate transitions.

Among the seven types of transition cues we extracted, EI, GA,
and CD are the hardest to recognize because they are 1) subjective,
which calls for personalization, 2) commonly seen, which can be
hard for AI to distinguish between normal actions and those that
foreshadow transitions, and 3) implicit, which can take intensive
time to recognize the need for transition and bring heavy delays.
Considering the small sample size in this work, future studies can
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Figure 3: The frequency distribution of all transition cues in 20 types of coupling transition. Style A and Style B at the table
head represent the starting and ending coupling style in a transition, i.e., transitioning from Style A (row) to Style B (column).

expand the sample size to generate more data and calculate the per-
centage of frequencies those commonly seen cues lead to coupling
transitions, and feed the expanded and curated data to AI models
if prediction is needed in future adaptive AI systems. Besides, al-
though only one out of the seven types is initiated by AI, implying
AI catering to human behaviors is a better solution in most cases,
we still suggest preserving AI’s ability to “interfere” because such
interference can lead to the transition to tighter collaboration, sup-
ported by previous studies [30]. Also, analyzing human behaviors
in real time would inevitably cause delays constrained by current
technologies. Future studies should examine the impact of such
delays (e.g., [17]) and the threshold of acceptable length of delays.

5.3 Limitations and Future Work
Some limitations in this work ask for future work to strengthen
our contributions. First, the data we analyzed is from a lab exper-
iment, which can have discrepancies in human-AI collaboration
performances in real-world environments. Conducting user studies
with operable prototypes in real human-AI collaborative situations
should be considered to ensure the results’ practicality. Also, the
representative of our participants is limited due to the age range,
future studies involving more diverse participants should be con-
sidered to eliminate the potential bias brought by age.

Apart from the limitations, our results can potentially be gen-
eralized to other scenarios in future work apart from the design
process in our experiments. In human-human collaboration, similar
coupling styles were observed in collaborative tasks like problem-
solving [14, 30], interior design tasks [31], travel planning [1], sense
making and information visualization [23], etc., with definitions
change accordingly with tasks and scenarios, but key features man-
ifested by the dimensions we concluded remains stable. These stud-
ies suggest that similar coupling styles may also exist in different

collaborative domains in human-AI collaboration. However, it is
still worth noticing that our results are not one-size-fits-all, and
could possibly be inapplicable for collaborative tasks that do not
exhibit the mixed-focus features.

6 Conclusion
In this work, we propose to view human-AI collaboration as mixed-
focus collaboration to inspire future design of adaptive AI. Contex-
tualized in human-AI collaborative design, we analyzed 12 video
recordings from six participants, which generated four coupling
styles and 7 types of coupling transition cues. Last, we envisioned
how these results could inspire future design of adaptive AI, includ-
ing guiding the design of AI behaviors and how AI can transition
between different coupling styles. We hope this preliminary re-
search can offer new insights for the research on adaptive AI.
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Table 4: The descriptive coupling styles coding scheme adapted from Neumayr et al. [23]. DP and D were excluded because they
would not appear in our experiment.

Focused
Problem

Engaged in
Communication

Engaged in
Operation

Definition

DISC Same Very frequent Sometimes Active discussion between two collaborators about
the task. Limited system operation (e.g., scrolling the
canvas)

VE Same Frequent Frequent/Very
infrequent

View engaged. One collaborator is actively working
in the workspace, another watches and engages in
conversation and commenting on the observed
activities, but is not operating with the system

SV Similar Very infrequent Infrequent Sharing of the same view of an item. Collaborators
look at the same display that shows the information

SIDC Similar Sometimes Frequent Sharing of the same information but using
different displays for coordinated exploration.
Collaborators view the same information item but
use different displays for coordinated exploration

SIDD Similar Very infrequent Very frequent Sharing of the same information but using
different displays. Collaborators view the same
information item but use different devices and are
not engaged in active conversation.

SSP Related Infrequent Very frequent Work is shared to solve the same specific problem.
Users read different information items from a shared
set.

SGP Related in
general

Very infrequent Very frequent Work on the same general problem but from
different starting points.
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